Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
BMC Genomics ; 25(1): 186, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365592

ABSTRACT

BACKGROUND: Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C. tigris). RESULTS: Although there is conservation in high-level mechanistic pathways regulating venom production (unfolded protein response, Notch signaling and cholesterol homeostasis), there are differences in the regulation of histone methylation enzymes, transcription factors, and microRNAs in venom glands from these two snake families. Histone methyltransferases and transcription factor (TF) specificity protein 1 (Sp1) were highly upregulated in the milked elapid venom gland in comparison to the viperids, whereas nuclear factor I (NFI) TFs were upregulated after viperid venom milking. Sp1 and NFI cis-regulatory elements were common to toxin gene promoter regions, but many unique elements were also present between elapid and viperid toxins. The presence of Sp1 binding sites across multiple elapid toxin gene promoter regions that have been experimentally determined to regulate expression, in addition to upregulation of Sp1 after venom milking, suggests this transcription factor is involved in elapid toxin expression. microRNA profiles were distinctive between milked and unmilked venom glands for both snake families, and microRNAs were predicted to target a diversity of toxin transcripts in the elapid P. textilis venom gland, but only snake venom metalloproteinase transcripts in the viperid C. viridis venom gland. These results suggest differences in toxin gene posttranscriptional regulation between the elapid P. textilis and viperid C. viridis. CONCLUSIONS: Our comparative transcriptomic and genomic analyses between toxin genes and isoforms in elapid and viperid snakes suggests independent toxin regulation between these two snake families, demonstrating multiple different regulatory mechanisms underpin a venomous phenotype.


Subject(s)
Crotalus , MicroRNAs , Toxins, Biological , Venomous Snakes , Viperidae , Humans , Animals , Elapidae/genetics , Snake Venoms/chemistry , Snake Venoms/genetics , Snake Venoms/metabolism , Elapid Venoms/chemistry , Elapid Venoms/genetics , Elapid Venoms/metabolism , Viperidae/genetics , Viperidae/metabolism , Transcriptome , Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Toxicol In Vitro ; 95: 105755, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38061605

ABSTRACT

The Caucasian viper Macrovipera lebetina obtusa (MLO) is one of the most prevalent and venomous snakes in the Caucasus and the surrounding regions, yet the effects of MLO venom on cardiac function remain largely unknown. We examined the influence of MLO venom (crude and with inhibited metalloproteinases and phospholipase A2) on attachment and metabolic activity of rat neonatal cardiomyocytes (CM) and nonmyocytes (nCM), assessed at 1 and 24 h. After exposing both CM and nCM to varying concentrations of MLO venom, we observed immediate cytotoxic effects at a concentration of 100 µg/ml, causing detachment from the culture substrate. At lower MLO venom concentrations both cell types detached in a dose-dependent manner. Inhibition of MLO venom metalloproteinases significantly improved CM and nCM attachment after 1-hour exposure. At 24-hour exposure to metalloproteinases inhibited venom statistically significant enhancement was observed only in nCM attachment. However, metabolic activity of CM and nCM did not decrease upon exposure to the lower dose of the venom. Moreover, we demonstrated that metalloproteinases and phospholipases A2 are not the components of the MLO venom that change metabolic activity of both CM and nCM. These results provide a valuable platform to study the impact of MLO venom on prey cardiac function. They also call for further exploration of individual venom components for pharmaceutical purposes.


Subject(s)
Viperidae , Rats , Animals , Viperidae/metabolism , Viper Venoms/toxicity , Myocytes, Cardiac , Phospholipases A2/metabolism , Metalloproteases
3.
J Neurochem ; 168(4): 428-440, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36912731

ABSTRACT

People bitten by Alpine vipers are usually treated with antivenom antisera to prevent the noxious consequences caused by the injected venom. However, this treatment suffers from a number of drawbacks and additional therapies are necessary. The venoms of Vipera ammodytes and of Vipera aspis are neurotoxic and cause muscle paralysis by inducing neurodegeneration of motor axon terminals because they contain a presynaptic acting sPLA2 neurotoxin. We have recently found that any type of damage to motor axons is followed by the expression and activation of the intercellular signaling axis consisting of the CXCR4 receptor present on the membrane of the axon stump and of its ligand, the chemokine CXCL12 released by activated terminal Schwann cells. We show here that also V. ammodytes and V. aspis venoms cause the expression of the CXCL12-CXCR4 axis. We also show that a small molecule agonist of CXCR4, dubbed NUCC-390, induces a rapid regeneration of the motor axon terminal with functional recovery of the neuromuscular junction. These findings qualify NUCC-390 as a promising novel therapeutics capable of improving the recovery from the paralysis caused by the snakebite of the two neurotoxic Alpine vipers.


Subject(s)
Indazoles , Receptors, CXCR4 , Viper Venoms , Viperidae , Animals , Paralysis/chemically induced , Receptors, CXCR4/agonists , Viper Venoms/antagonists & inhibitors , Viper Venoms/toxicity , Vipera/metabolism , Viperidae/metabolism , Mice , Indazoles/pharmacology , Indazoles/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Snake Bites/drug therapy
4.
Toxicon ; 237: 107528, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013057

ABSTRACT

Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.


Subject(s)
Crotalinae , Viperidae , Animals , Mice , Viperidae/metabolism , Tandem Mass Spectrometry , Phospholipases A2/chemistry , Viper Venoms/toxicity , Edema/chemically induced
5.
Toxicon ; 235: 107317, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37839739

ABSTRACT

Patients envenomed by snakes from the Viperidae and Elapidae families in China often have varying degrees of local tissue necrosis. Due to the relative clinical characteristics of local tissue necrosis and ulceration following envenoming, this study has analyzed the proteome of six snake venoms from the Viperidae and Elapidae family, and the toxin profiles of each snake were compared and correlated with the clinical manifestations that follow cytotoxic envenoming. Deinagkistrodon acutus and Naja atra envenomation induce severe ulceration, which is absent in Bungarus multicinctus envenomation and mild in the other three vipers. It is interesting to note that the proportion of c-type lectins (CTL) (20.63%) in Deinagkistrodon acutus venom was relatively high, which differs from the venom of other vipers. In addition, three-fingered toxin (3FTx) (2.15%) is present in the venom of Deinagkistrodon acutus, but has not been detected in the remaining three vipers. Snake venom metalloprotease (SVMP) (34.4%-44.7%), phospholipase A2 (PLA2) (9.81%-40.83%), and snake venom serine protease (SVSP) (9.44%-16.2%) represent the most abundant families of toxin in Viperidae venom. The Elapidae venom proteome was mainly composed of neurotoxins and cytotoxins, including 3FTx (39.28%-60.08%) and PLA2 (8.24%-58.95%) toxins, however, the proportion of CRISPS (26.36%) in Naja atra venom was relatively higher compared to Bungarus multicinctus venom. Significant differences in SVMP, SVSP, and 3FTx expression levels exist between the Viperidae and the Elapidae family. The main toxins responsible for the development of tissue necrosis and ulcerations following Viperidae envenoming are hematotoxins (SVSMP, SVSP) and myotoxins (PLA2). Deinagkistrodon acutus venom contains high levels of CTL and traces of 3FTx, leading to more severe local necrosis. However, Naja atra venom can also cause severe local necrosis through the effects of myotoxin (3FTx, CRISP, PLA2). Bungarus multicinctus venom does not contain myotoxins, resulting in pure systemic neurological manifestations no obvious necrosis of local tissue in patients.


Subject(s)
Elapidae , Viperidae , Animals , Humans , Elapidae/metabolism , Viperidae/metabolism , Neurotoxins/metabolism , Proteomics/methods , Proteome/metabolism , Snake Venoms/metabolism , Elapid Venoms/toxicity , Elapid Venoms/metabolism , Naja naja/metabolism , Phospholipases A2/toxicity , Phospholipases A2/metabolism
6.
Toxicon ; 235: 107328, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884129

ABSTRACT

Viperidae snake species is widely abundant and responsible for most envenomation cases in Turkey. The structural and compositional profiles of snake venom have been investigated to study the venom component variation across different species and to profile the venom biological activity variation against prey. In this context, we used proteomics, glycoproteomics and glycomics strategies to characterize the protein, glycoproteins and glycan structural and compositional profiles of various snake venoms in the Viperidae family. Moreover, we compared these profiles using the downstream bioinformatics and machine learning classification modules. The overall mass spectrometry profiles identified 144 different proteins, 36 glycoproteins and 78 distinct N-glycan structures varying in composition across the five venoms. A high amount of the characterized proteins belongs to the glycosylated protein family Trypsin-like serine protease (Tryp_SPc), Disintegrin (DISIN), and ADAM Cysteine-Rich (ACR). Most identified N-glycans have a complex chain carrying galactosylated N-glycans abundantly. The glycan composition data obtained from glycoproteomics aligns consistently with the findings from glycomics. The clustering and principal component analyses (PCA) illustrated the composition-based similarities and differences between each snake venom species' proteome, glycoproteome and glycan profiles. Specifically, the N-glycan profiles of M. xanthina (Mx) and V. a. ammodytes (Vaa) venoms were identical and difficult to differentiate; in contrast, their proteome profiles were distinct. Interestingly, the variety of the proteins across the species highlighted the impact of glycosylation on the diversity of the glycosylated protein families. This proposed high throughput approach provides accurate and comprehensive profiles of the composition and function of various Viperidae snake venoms.


Subject(s)
Viper Venoms , Viperidae , Animals , Viper Venoms/chemistry , Viperidae/metabolism , Proteome/metabolism , Proteomics/methods , Glycomics , Snake Venoms/chemistry , Glycoproteins/metabolism , Polysaccharides
7.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569801

ABSTRACT

Inflammation is associated with many pathology disorders and the malignant progression of most cancers. Therefore, targeting inflammatory pathways could provide a promising strategy for disease prevention and treatment. In this study, we experimentally investigated the anti-inflammatory effect of CC5 and CC8, two disintegrin isoforms isolated from Cerastes cerastes snake venom, on LPS-stimulated macrophages, both on human THP-1 and mouse RAW264.7 cell adherence and their underlying mechanisms by measuring cytokine release levels and Western blot assay. Equally, both molecules were evaluated on a carrageenan-induced edema rat model. Our findings suggest that CC5 and CC8 were able to reduce adhesion of LPS-stimulated macrophages both on human THP-1 and mouse RAW264.7 cells to fibrinogen and vitronectin through the interaction with the αvß3 integrin receptor. Moreover, CC5 and CC8 reduced the levels of reactive oxygen species (ROS) mediated by the NF-κB, MAPK and AKT signaling pathways that lead to decreased production of the pro-inflammatory cytokines TNF-α, IL-6 and IL-8 and increased secretion of IL-10 in LPS-stimulated THP-1 and RAW264.7 cells. Interestingly, both molecules potently exhibited an anti-inflammatory effect in vivo by reducing paw swelling in rats. In light of these results, we can propose the CC5 and CC8 disintegrins as interesting tools to design potential candidates against inflammatory-related diseases.


Subject(s)
Disintegrins , Viperidae , Rats , Mice , Humans , Animals , Disintegrins/pharmacology , Lipopolysaccharides/toxicity , Viperidae/metabolism , Snake Venoms/pharmacology , NF-kappa B/metabolism , Inflammation/drug therapy , Cytokines/metabolism , Protein Isoforms , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , RAW 264.7 Cells
8.
J Mol Evol ; 91(4): 514-535, 2023 08.
Article in English | MEDLINE | ID: mdl-37269364

ABSTRACT

Snake venom can vary both among and within species. While some groups of New World pitvipers-such as rattlesnakes-have been well studied, very little is known about the venom of montane pitvipers (Cerrophidion) found across the Mesoamerican highlands. Compared to most well-studied rattlesnakes, which are widely distributed, the isolated montane populations of Cerrophidion may facilitate unique evolutionary trajectories and venom differentiation. Here, we describe the venom gland transcriptomes for populations of C. petlalcalensis, C. tzotzilorum, and C. godmani from Mexico, and a single individual of C. sasai from Costa Rica. We explore gene expression variation in Cerrophidion and sequence evolution of toxins within C. godmani specifically. Cerrophidion venom gland transcriptomes are composed primarily of snake venom metalloproteinases, phospholipase A[Formula: see text]s (PLA[Formula: see text]s), and snake venom serine proteases. Cerrophidion petlalcalensis shows little intraspecific variation; however, C. godmani and C. tzotzilorum differ significantly between geographically isolated populations. Interestingly, intraspecific variation was mostly attributed to expression variation as we did not detect signals of selection within C. godmani toxins. Additionally, we found PLA[Formula: see text]-like myotoxins in all species except C. petlalcalensis, and crotoxin-like PLA[Formula: see text]s in the southern population of C. godmani. Our results demonstrate significant intraspecific venom variation within C. godmani and C. tzotzilorum. The toxins of C. godmani show little evidence of directional selection where variation in toxin sequence is consistent with evolution under a model of mutation-drift equilibrium. Cerrophidion godmani individuals from the southern population may exhibit neurotoxic venom activity given the presence of crotoxin-like PLA[Formula: see text]s; however, further research is required to confirm this hypothesis.


RESUMEN: El veneno de las serpientes puede variar entre y dentro de las especies. Mientras algunos grupos de viperidos del Nuevo Mundo­como las cascabeles­han sido bien estudiadas, muy poco se sabe acerca del veneno de las nauyacas de frío (Cerrophidion) que se encuentran en las zonas altas de Mesoamérica. Comparadas con las extensamente estudiadas cascabeles, que estan ampliamente distribuidas, las poblaciones de Cerrophidion, aisladas en montañas, pueden poseer trayectorias evolutivas y diferenciación en su veneno unicos. En el presente trabajo, describimos el transcriptoma de las glándulas de veneno de poblaciones de C. petlalcalensis, C. tzotzilorum, y C. godmani de México, y un individuo de C. sasai de Costa Rica. Exploramos la variación en la expresión de toxinas en Cerrophidion y la evolución en las secuencias geneticas en C. godmani específicamente. El transcriptoma de la glándula de veneno de Cerrophidion esta compuesto principalmente de Metaloproteinasas de Veneno de Serpiente, Fosfolipasas A[Formula: see text] (PLA[Formula: see text]s), y Serin Proteasas de Veneno de Serpiente. Cerrophidion petlalcalensis presenta poca variación intraespecífica; sin embargo, los transcriptomas de la glandula de veneno de C. godmani y C. tzotzilorum difieren significativamente entre poblaciones geográficamente aisladas. Curiosamente, la variación intraespecífica estuvo atribuida principalmente a la expresión de las toxinas ya que no encontramos señales de selección en las toxinas de C. godmani. Adicionalmente, encontramos miotoxinas similares a PLA[Formula: see text] en todas las especies excepto C. petlalcalensis, y PLA[Formula: see text]s similares a crotoxina en la población sureña de C. godmani. Nuestros resultados demuestran la presencia de variacion intraespecífica presente en el veneno de C. godmani y C. tzotzilorum. Las toxinas de Cerrophidion godmani muestran poca evidencia de selección direccional, y la variación en la secuencias de las toxinas es consistente con evolucion bajo un modelo de equilibrio de mutación-deriva. Algunos individuos de C. godmani de la población del sur potencialmente tienen un veneno neurotóxico dada la presencia de PLA[Formula: see text]s similares a la crotoxina, sin embargo, se necesita más evidencia para corroborar esta hipótesis.


Subject(s)
Crotalid Venoms , Crotalinae , Crotoxin , Viperidae , Humans , Animals , Crotalinae/genetics , Crotalinae/metabolism , Viperidae/metabolism , Crotoxin/metabolism , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Snake Venoms/metabolism , Polyesters/metabolism
9.
Toxins (Basel) ; 15(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37368658

ABSTRACT

To improve the characterization of snake venom protein profiles, we report the application of a new generation of proteomic methodology to deeply characterize complex protein mixtures. The new approach, combining a synergic multi-enzymatic and a time-limited digestion (MELD), is a versatile and straightforward protocol previously developed by our group. The higher number of overlapping peptides generated during MELD increases the quality of downstream peptide sequencing and of protein identification. In this context, this work aims at applying the MELD strategy to a venomics purpose for the first time, and especially for the characterization of snake venoms. We used four venoms as the test models for this proof of concept: two Elapidae (Dendroaspis polylepis and Naja naja) and two Viperidae (Bitis arietans and Echis ocellatus). Each venom was reduced and alkylated before being submitted to two different protocols: the classical bottom-up proteomics strategy including a digestion step with trypsin only, or MELD, which combines the activities of trypsin, Glu-C and chymotrypsin with a limited digestion approach. The resulting samples were then injected on an M-Class chromatographic system, and hyphenated to a Q-Exactive Mass Spectrometer. Toxins and protein identification were performed by Peaks Studio X+. The results show that MELD considerably improves the number of sequenced (de novo) peptides and identified peptides from protein databases, leading to the unambiguous identification of a greater number of toxins and proteins. For each venom, MELD was successful, not only in terms of the identification of the major toxins (increasing of sequence coverage), but also concerning the less abundant cellular components (identification of new groups of proteins). In light of these results, MELD represents a credible methodology to be applied as the next generation of proteomics approaches dedicated to venomic analysis. It may open new perspectives for the sequencing and inventorying of the venom arsenal and should expand global knowledge about venom composition.


Subject(s)
Proteomics , Viperidae , Animals , Proteomics/methods , Trypsin/metabolism , Snake Venoms/chemistry , Elapidae/metabolism , Proteins/metabolism , Viperidae/metabolism , Peptides/genetics , Peptides/metabolism , High-Throughput Nucleotide Sequencing , Digestion , Elapid Venoms/chemistry , Proteome/analysis
10.
Toxicon ; 229: 107138, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37127124

ABSTRACT

African trypanosomiasis is an infectious disease caused by hemoparasites of the genus Trypanosoma and remains a major health problem in Africa - killing around 4000 people and animals worth an estimated $5 billion, annually. The absence of a vaccine and satisfactory drug against African trypanosomiasis (AT) necessitates the continued search for new chemotherapy options. Owing to the rich biochemical diversity in snake venom, it has recently become a source of therapeutic peptides that are being explored for the development of novel drug candidates for diverse ailments such as cancers and infectious diseases. To explore this, Echis ocellatus venom (EOV) was investigated for the presence of an anti-Trypanosoma factor, with the subsequent aim to isolate and identify it. Crude EOV was collected and tested in vitro on the bloodstream form (BSF) i.e. long and slender morphological form of Trypanosoma brucei and T. congolense. This initial testing was followed by a sequential anti-trypanosomal assay guided purification of EOV using ethanol precipitation, distillation, and ion exchange (IEX) chromatography to obtain the active trypanocidal component. The purified anti-Trypanosoma factor, estimated to be a 52-kDa protein on SDS-PAGE, was subjected to in-gel trypsin digestion and 2D RP HPLC-MS/MS to identify the protein. The anti-Trypanosoma factor was revealed to be a zinc-dependent metalloproteinase that contains the HEXXHXXGXXH adamalysin motif. This protein may provide a conceptual framework for the possible design of a safe and effective anti-trypanosomal peptide for the treatment of AT.


Subject(s)
Trypanosoma , Trypanosomiasis, African , Viperidae , Animals , Viper Venoms/chemistry , Trypanosomiasis, African/drug therapy , Tandem Mass Spectrometry , Viperidae/metabolism , Metalloproteases/metabolism
11.
J Ethnopharmacol ; 314: 116577, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37178980

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cerastes is a snake found mainly in the Egyptian desert. Many studies were performed to explain the possible snake venom's pharmacological therapeutic effect in different autoimmune diseases. One of the most common auto-immune diseases is rheumatoid arthritis. Rheumatoid arthritis is characterized by a high release of pro-inflammatory and immune-modulatory cytokines. The reduction of these markers can indicate how effective is the administered drug. AIM OF THE STUDY: This study aims to explore the potential pharmacological effects of cerastes venom in experimentally-induced RA in rats using Complete Freund's adjuvant - via different mechanisms - by assessing various tissue and serum parameters. MATERIALS AND METHODS: The rats were assigned to negative control group, cerastes control group, positive control group, dexamethasone-treated group, infliximab-treated group, and cerastes-treated group. The study ended on the 20th day when serum and tissue samples were prepared for further evaluation of reduced glutathione, malondialdehyde, rheumatoid factor, tumor necrosis factor-α, interleukin-6, and nuclear factor kappa-light-chain-enhancer of activated B cells as well as relative expression of phosphorylated Janus-kinase, phosphorylated signal transducers and activators of transcription, nuclear factor erythroid 2-related factor 2, and receptor activator of nuclear factor Kappa-B ligand. In addition, a histopathological examination of different groups' knees joints, and spleen was done. RESULTS: The results showed a significant improvement of arthritis induced in the cerastes-treated group in contrast to the positive control group in all assessed parameters. In addition, significant improvement of arthritis was observed in the histopathological examination of different groups' knees joints, and spleen. CONCLUSION: These results revealed that cerastes snake venom has potent anti-inflammatory and immunomodulatory effects and can be used in the management of arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Viperidae , Rats , Animals , Freund's Adjuvant , Janus Kinases/metabolism , Viper Venoms , Viperidae/metabolism , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Signal Transduction , STAT Transcription Factors/metabolism , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy
12.
J Proteome Res ; 22(6): 1734-1746, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37010854

ABSTRACT

In this study, we present high-throughput (HT) venomics, a novel analytical strategy capable of performing a full proteomic analysis of a snake venom within 3 days. This methodology comprises a combination of RP-HPLC-nanofractionation analytics, mass spectrometry analysis, automated in-solution tryptic digestion, and high-throughput proteomics. In-house written scripts were developed to process all the obtained proteomics data by first compiling all Mascot search results for a single venom into a single Excel sheet. Then, a second script plots each of the identified toxins in so-called Protein Score Chromatograms (PSCs). For this, for each toxin, identified protein scores are plotted on the y-axis versus retention times of adjacent series of wells in which a toxin was fractionated on the x-axis. These PSCs allow correlation with parallel acquired intact toxin MS data. This same script integrates the PSC peaks from these chromatograms for semiquantitation purposes. This new HT venomics strategy was performed on venoms from diverse medically important biting species; Calloselasma rhodostoma, Echis ocellatus, Naja pallida, Bothrops asper, Bungarus multicinctus, Crotalus atrox, Daboia russelii, Naja naja, Naja nigricollis, Naja mossambica, and Ophiophagus hannah. Our data suggest that high-throughput venomics represents a valuable new analytical tool for increasing the throughput by which we can define venom variation and should greatly aid in the future development of new snakebite treatments by defining toxin composition.


Subject(s)
Snake Bites , Viperidae , Animals , Proteomics/methods , Snake Venoms/chemistry , Bungarus/metabolism , Viperidae/metabolism , Elapid Venoms/chemistry
13.
Toxins (Basel) ; 15(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-37104202

ABSTRACT

Bitis arietans is a medically important snake found in Sub-Saharan Africa. The envenomation is characterized by local and systemic effects, and the lack of antivenoms aggravates the treatment. This study aimed to identify venom toxins and develop antitoxins. The F2 fraction obtained from Bitis arietans venom (BaV) demonstrated the presence of several proteins in its composition, including metalloproteases. Titration assays carried out together with the immunization of mice demonstrated the development of anti-F2 fraction antibodies by the animals. The determination of the affinity of antibodies against different Bitis venoms was evaluated, revealing that only BaV had peptides recognized by anti-F2 fraction antibodies. In vivo analyses demonstrated the hemorrhagic capacity of the venom and the effectiveness of the antibodies in inhibiting up to 80% of the hemorrhage and 0% of the lethality caused by BaV. Together, the data indicate: (1) the prevalence of proteins that influence hemostasis and envenomation; (2) the effectiveness of antibodies in inhibiting specific activities of BaV; and (3) isolation and characterization of toxins can become crucial steps in the development of new alternative treatments. Thus, the results obtained help in understanding the envenoming mechanism and may be useful for the study of new complementary therapies.


Subject(s)
Snake Bites , Viperidae , Mice , Animals , Viperidae/metabolism , Snake Venoms/metabolism , Antivenins , Metalloproteases/metabolism , Hemorrhage , Immunoglobulin G/metabolism
14.
Toxins (Basel) ; 15(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36828475

ABSTRACT

Snakebite is considered a neglected tropical disease, and it is one of the most intricate ones. The variability found in snake venom is what makes it immensely complex to study. These variations are present both in the big and the small molecules found in snake venom. This study focused on examining the variability found in the venom's small molecules (i.e., mass range of 100-1000 Da) between two main families of venomous snakes-Elapidae and Viperidae-managing to create a model able to classify unknown samples by means of specific features, which can be extracted from their LC-MS data and output in a comprehensive list. The developed model also allowed further insight into the composition of snake venom by highlighting the most relevant metabolites of each group by clustering similarly composed venoms. The model was created by means of support vector machines and used 20 features, which were merged into 10 principal components. All samples from the first and second validation data subsets were correctly classified. Biological hypotheses relevant to the variation regarding the metabolites that were identified are also given.


Subject(s)
Snake Bites , Viperidae , Animals , Humans , Snake Venoms , Elapidae/metabolism , Viperidae/metabolism , Mass Spectrometry , Elapid Venoms/metabolism
15.
Toxins (Basel) ; 14(11)2022 10 22.
Article in English | MEDLINE | ID: mdl-36355973

ABSTRACT

Snakebite envenoming is a neglected tropical disease (NTD) that results from the injection of snake venom of a venomous snake into animals and humans. In Africa (mainly in sub-Saharan Africa), over 100,000 envenomings and over 10,000 deaths per annum from snakebite have been reported. Difficulties in snakebite prevention and antivenom treatment are believed to result from a lack of epidemiological data and underestimated figures on snakebite envenoming-related morbidity and mortality. There are species- and genus-specific variations associated with snake venoms in Africa and across the globe. These variations contribute massively to diverse differences in venom toxicity and pathogenicity that can undermine the efficacy of adopted antivenom therapies used in the treatment of snakebite envenoming. There is a need to profile all snake venom proteins of medically important venomous snakes endemic to Africa. This is anticipated to help in the development of safer and more effective antivenoms for the treatment of snakebite envenoming within the continent. In this review, the proteomes of 34 snake venoms from the most medically important snakes in Africa, namely the Viperidae and Elipdae, were extracted from the literature. The toxin families were grouped into dominant, secondary, minor, and others based on the abundance of the protein families in the venom proteomes. The Viperidae venom proteome was dominated by snake venom metalloproteinases (SVMPs-41%), snake venom serine proteases (SVSPs-16%), and phospholipase A2 (PLA2-17%) protein families, while three-finger toxins (3FTxs-66%) and PLA2s (16%) dominated those of the Elapidae. We further review the neutralisation of these snake venoms by selected antivenoms widely used within the African continent. The profiling of African snake venom proteomes will aid in the development of effective antivenom against snakebite envenoming and, additionally, could possibly reveal therapeutic applications of snake venom proteins.


Subject(s)
Snake Bites , Viperidae , Animals , Humans , Antivenins/pharmacology , Antivenins/therapeutic use , Elapid Venoms/toxicity , Elapidae/metabolism , Snake Bites/drug therapy , Viperidae/metabolism , Proteome/metabolism , Proteomics/methods , Snake Venoms/toxicity , Africa South of the Sahara
16.
Toxins (Basel) ; 14(11)2022 10 23.
Article in English | MEDLINE | ID: mdl-36355974

ABSTRACT

Increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of snake venoms. However, the complexity of animal venoms and the extreme synergy of the venom components during envenomation calls for critical review and analysis. The epithelium is a primary target for injected viper venom's toxic substances, and therefore, is a focus in modern toxinology. We used the Vero epithelial cell line as a model to compare the actions of a crude Macrovipera lebetina obtusa (Levantine viper) venom with the actions of the same venom with two key enzymatic components inhibited (specifically, phospholipase A2 (PLA2) and metalloproteinases) in the bioenergetic cellular response, i.e., oxygen uptake and reactive oxygen species generation. In addition to the rate of free-radical oxidation and lipid peroxidation, we measured real-time mitochondrial respiration (based on the oxygen consumption rate) and glycolysis (based on the extracellular acidification rate) using a Seahorse analyzer. Our data show that viper venom drives an increase in both glycolysis and respiration in Vero cells, while the blockage of PLA2 or/and metalloproteinases affects only the rates of the oxidative phosphorylation. PLA2-blocking in venom also increases cytotoxic activity and the overproduction of reactive oxygen species. These data show that certain components of the venom may have a different effect within the venom cocktail other than the purified enzymes due to the synergy of the venom components.


Subject(s)
Viper Venoms , Viperidae , Animals , Chlorocebus aethiops , Viper Venoms/toxicity , Vero Cells , Reactive Oxygen Species/metabolism , Viperidae/metabolism , Phospholipases A2/pharmacology , Phospholipases A2/metabolism , Metalloproteases/toxicity , Metalloproteases/metabolism , Lipid Peroxidation
17.
Toxins (Basel) ; 14(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36287984

ABSTRACT

Envenoming by Macrovipera lebetina subspecies causes severe life-threatening difficulties for people living in North Africa and the Middle East. To better understand the pathophysiology of envenoming and improve patient management, knowledge about the venom components of the subspecies is essential. Here, the venom proteomes of Macrovipera lebetina lebetina from Cyprus and Macrovipera lebetina cernovi from Iran were characterized using RP-HPLC separation of the crude venom proteins, SDS-PAGE of fractionated proteins, and LC-MS/MS of peptides obtained from in-gel tryptic digestion of protein bands. Moreover, we also used high-resolution shot-gun proteomics to gain more reliable identification, where the whole venom proteomes were subjected directly to in-solution digestion before LC-HR-MS/MS. The data revealed that both venoms consisted of at least 18 protein families, of which snake venom Zn2+-dependent metalloprotease (SVMP), serine protease, disintegrin, phospholipase A2, C-type lectin-like, and L-amino acid oxidase, together accounted for more than 80% of the venoms' protein contents. Although the two viper venoms shared mostly similar protein classes, the relative occurrences of these toxins were different in each snake subspecies. For instance, P-I class of SVMP toxins were found to be more abundant than P-III class in the venoms of M. l. cernovi compared to M. l. lebetina, which gives hints at a more potent myonecrotic effect and minor systemic hemorrhage following envenoming by M. l. cernovi than M. l. lebetina. Moreover, single-shot proteomics also revealed many proteins with low abundance (<1%) within the venoms, such as aminopeptidase, hyaluronidase, glutaminyl-peptide cyclotransferase, cystatin, phospholipase B, and vascular endothelial growth factor. Our study extends the in-depth understanding of the venom complexity of M. lebetina subspecies, particularly regarding toxin families associated with envenoming pathogenesis and those hard-detected protein classes expressed in trace amounts.


Subject(s)
Proteomics , Viperidae , Animals , Humans , Aminopeptidases/metabolism , Chromatography, Liquid , Disintegrins/metabolism , Hyaluronoglucosaminidase/metabolism , Iran , L-Amino Acid Oxidase/metabolism , Lectins, C-Type/metabolism , Lysophospholipase/metabolism , Metalloproteases/metabolism , Proteome/metabolism , Serine Proteases/metabolism , Tandem Mass Spectrometry , Vascular Endothelial Growth Factor A/metabolism , Viper Venoms/chemistry , Viperidae/metabolism
18.
Toxins (Basel) ; 14(8)2022 08 22.
Article in English | MEDLINE | ID: mdl-36006235

ABSTRACT

Two recently revised Azemiops snakes with apparent differences in their external appearances and skeletal morphologies but unclear genetic boundaries have been proposed. Some researchers have refrained from using the newly proposed taxonomy because these two "species" might be two clades corresponding to different geographical populations of Azemiops feae. To improve the understanding of the kinship of these two Burmese viper groups, more of their characteristics should be explored in depth. We performed a comparative analysis of the proteomic profiles and biochemical activities of snake venoms from these two groups (Sichuan A. feae and Zhejiang A. feae) and evaluated the immunorecognition capacity of commercial antivenoms toward them. Eight protein families were identified in venoms from these two groups, while phospholipase B was only detected in venom from Sichuan A. feae. These protein families displayed varying degrees of differences in relative abundance between venoms, and phospholipase A2 (Sichuan A. feae: 57.15%; Zhejiang A. feae: 65.94%) was the predominated component. Gloydius brevicaudus antivenom exhibited the strongest capacity to immunologically recognize these two venoms, but this was mainly limited to components with high molecular masses, some of which differed between venoms. Additionally, Zhejiang A. feae venom was more toxic than Sichuan A. feae venom, and the venoms expressed remarkable differences in enzymatic activities, probably resulting from the variation in the relative abundance of specific protein families. Our findings unveil differences between the two Burmese viper groups in terms of proteomic profiles, immunoreactivity, and the biochemical functions of their venoms. This information will facilitate the management of snakebites caused by these snakes.


Subject(s)
Snake Bites , Viperidae , Animals , Antivenins/metabolism , Antivenins/pharmacology , Proteins/metabolism , Proteomics/methods , Snake Venoms/chemistry , Viper Venoms/chemistry , Viperidae/metabolism
19.
Toxins (Basel) ; 14(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35878227

ABSTRACT

Many venomous animals express toxins that show extraordinary levels of variation both within and among species. In snakes, most studies of venom variation focus on front-fanged species in the families Viperidae and Elapidae, even though rear-fanged snakes in other families vary along the same ecological axes important to venom evolution. Here we characterized venom gland transcriptomes from 19 snakes across two dipsadine rear-fanged genera (Leptodeira and Helicops, Colubridae) and two front-fanged genera (Bothrops, Viperidae; Micrurus, Elapidae). We compared patterns of composition, variation, and diversity in venom transcripts within and among all four genera. Venom gland transcriptomes of rear-fanged Helicops and Leptodeira and front-fanged Micrurus are each dominated by expression of single toxin families (C-type lectins, snake venom metalloproteinase, and phospholipase A2, respectively), unlike highly diverse front-fanged Bothrops venoms. In addition, expression patterns of congeners are much more similar to each other than they are to species from other genera. These results illustrate the repeatability of simple venom profiles in rear-fanged snakes and the potential for relatively constrained venom composition within genera.


Subject(s)
Colubridae , Toxins, Biological , Viperidae , Animals , Colubridae/genetics , Colubridae/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Snake Venoms/genetics , Snake Venoms/metabolism , Toxins, Biological/metabolism , Transcriptome , Viperidae/metabolism
20.
J Proteomics ; 263: 104613, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35589061

ABSTRACT

Lataste's viper (Vipera latastei) is a venomous European viper endemic to the Iberian Peninsula, recognised as medically important by the World Health Organization. To date, no comprehensive characterisation of this species' venom has been reported. Here, we analysed the venoms of juvenile and adult specimens of V. latastei from two environmentally different populations from northern Portugal. Using bottom-up venomics, we produced six venom proteomes (three per population) from vipers belonging to both age classes (i.e., two juveniles and four adults), and RP-HPLC profiles of 54 venoms collected from wild specimens. Venoms from juveniles and adults differed in their chromatographic profiles and relative abundances of their toxins, suggesting the occurrence of ontogenetic changes in venom composition. Specifically, snake venom metalloproteinase (SVMP) was the most abundant toxin family in juvenile venoms, while snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins were the main toxins comprising adult venoms. The RP-HPLC venom profiles were found to vary significantly between the two sampled localities, indicating geographic variability. Furthermore, the presence/absence of certain peaks in the venom chromatographic profiles appeared to be significantly correlated also to factors like body size and sex of the vipers. Our findings show that V. latastei venom is a variable phenotype. The intraspecific differences we detected in its composition likely mirror changes in the feeding ecology of this species, taking place during different life stages and under different environmental pressures. SIGNIFICANCE: Lataste's viper (Vipera latastei) is a medically important viper endemic to the Iberian Peninsula, inhabiting different habitats and undergoing a marked ontogenetic dietary shift. In the current study, we report the first proteomic analysis of V. latastei venom from two environmentally different localities in northern Portugal. Our bottom-up venomic analyses show that snake venom serine proteinases (SVSPs), phospholipases A2 (PLA2s), and C-type lectin-like (CTLs) proteins are the major components of adult V. latastei venom. The comparative analysis of young and adult venoms suggests the occurrence of ontogenetic shift in toxin abundances, with snake venom metalloproteinases (SVMPs) being the predominant toxins in juvenile venoms. Moreover, geographic venom variation between the two studied populations is also detected, with our statistical analyses suggesting that factors like body size and sex of the vipers are possibly at play in its determination. Our work represents the first assessment of the composition of V. latastei venom, and the first step towards a better understanding of the drivers behind its variability.


Subject(s)
Toxins, Biological , Viperidae , Animals , Lectins, C-Type , Metalloproteases/metabolism , Phospholipases A2/analysis , Portugal , Proteomics/methods , Serine Proteases , Snake Venoms/chemistry , Toxins, Biological/analysis , Viper Venoms/chemistry , Viperidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...